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On radiation pressure forces in cold magnetised plasma 
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180 69 Prague 8, Czechoslovakia 

Received 9 January 1978 

Abstract. Hydrodynamic equations governing the time-averaged motions of plasma elec- 
trons and ions in the presence of oscillating and steady electromagnetic fields are derived. 
In addition to well known gradient and collisional terms, new forces arise owing to the 
time dependence of the field amplitudes. Time-averaged particle flux densities are given. 

1. Introduction 

The problem of time-averaged forces (see Landau and Lifshitz 1957) exerted by 
oscillating electromagnetic fields on charged particles has been considered by many 
authors. Boot et a1 (1958), Gaponov and Miller (1958) and Weibel (1958) first 
derived the ‘effective potential’ proportional to the square of the electric field ampli- 
tude, which governs the time-averaged motion of particles. That result has been 
generalized in a series of subsequent papers, of which we refer at least to Pitaevskii 
(1960), Johnston (1960), Golovanivskii and Kuzovnikov (1961), Hora (1969) and 
Canobbio (1969). Further references together with a survey of results can be found in 
reviews by Motz and Watson (1967) and by Gorbunov (1973). In the papers quoted 
above, the time-averaged forces arise owing to the space dependence of field 
components. They are proportional to &2/ ( jk~ la ) ,  where & is the wave electric field 
amplitude, ko is the wavevector and a is the scale length of the field inhomogeneity. In 
a collisional plasma, forces proportional to l?v/w arise, Y and w being the collisional 
and wave frequencies (Johnston 1960). 

For the case of non-magnetised plasma, it has been shown by Kadomtsev (1964), 
Fainberg and Shapiro (1965), Best (1968), Jungwirth (1972) and Klima (1972) that 
the time dependence of the wave field amplitude may produce a force proportional to 
&*/(UT), where T = (a In ,!?*/at)-’. The results of Klima (1972) have been extended to 
magnetised plasma for two particular cases of waves by Milantiev (1976). Washimi 
(1973) has pointed out the importance of such forces for the self-focusing of trans- 
verse waves propagating along the steady magnetic field. The general case of a 
dispersive magnetised medium has been analysed by Washimi and Karpman (1976). 
We shall return to their results later on. 

Up to now, no general explicit expressions for time-averaged forces exerted 
separately on plasma electrons and ions by the oscillating field with time-dependent 
amplitude have been derived. Such expressions are necessary for finding the (time- 
averaged) current density and, consequently, for closing the set of time-averaged 
hydrodynamic and field equations. More rigorously, full equations of time-averaged 
motions of electrons and ions are to be derived. 
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The purpose of the present paper is to deduce those equations for the case of cold 
magnetised plasma. In § 2, basic equations and assumptions are formulated. A 
hydrodynamic equation of motion which includes the forces proportional to E 2 / ( w r )  
is derived in 0 3. It turns out that it is necessary to average the hydrodynamic velocity 
along the oscillating trajectory of the fluid volume element (§ 4). The final equation 
(5.6) of the time-averaged motion is given in 0 5 together with expressions for the 
(time-averaged) electric current density. Section 6 compares the present analysis with 
relevant previous results. 

2. Basic equations and assumptions 

We assume the presence of steady fields Eo and Bo together with an oscillating 
electromagnetic field 8 and R. In Cartesian coordinates xi ,  i = 1,2, 3, 

8; = Bi(t, X)   COS(^^ - kojxj +a i ) ,  (2.1) 
where gi and ai are the slowly varying (real) amplitude and phase shift. The hydro- 
dynamic velocity U of cold plasma particles is governed by the following equation: 

where e and m are the charge and the mass of a particle, ei jk  is the Levi-Civita fully 
antisymmetric tensor and C is a friction force owing to collisions with other sorts of 
particles. To simplify the notation, we do not introduce here any symbol denoting the 
sort of particles. 

According to Klima (1967, 1968), the time-averaged terms in (2.2) arising from 
V E 2  and from C are proportional to (koa)-’ and to v / w ,  respectively, v being some 
effective collision frequency. The basic assumption of the following analysis is that the 
values of l / ( k o a ) ,  v / w  and 1 / ( w ~ )  are small parameters. In terms of these 
parameters, we neglect the second- and higher-order contributions. Within this 
approximation, the time-averaged force can be written in the following form: 

F =Fa + F, + F,, (2.3) 
where the individual terms on the right-hand side are proportional to E2/ (koa) ,  
&’v/w and 8 2 / ( w ~ ) ,  respectively. Since Fa and F, are given (Klima 1967, 1968), only 
F, remains to be determined. Using equation (2.2) for this purpose, we can therefore 
ignore Ci and (where suitable) spatial dependences of Ei, Eoi and Bok. Consequently, 
the time average of (2.2) can be substituted by a space average. This way we avoid the 
rather complicated application (Klima 1972, Milantiev 1976) of the Bogoliubov- 
Zubarev method. 

3, Space average of the equation of motion 

Applying the Fourier transform to (2.2), we obtain 

du:(k)  -- - -i J d3k’ d3k” a ( k  - k ‘ - k ” ) v j ( k ~ ) k : v i ( k f ) + e ( E i ( k ) + E o i ( k )  
at m 
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where 

etc, and Ci has been omitted according to § 2. The k = 0 component of the Fourier 
transform is proportional to the space-averaged value (see also § 5 ) .  Therefore, we 
put k + 0 in equation (3.1): 

(3.3) - = i  auy  5 d 3 k u j ( k ) k j u : ( k ) + ~ ( ~ ~ , + - ~ j ~ o i + ~ J  eijr 0 d3kuj(k)Hr(k)),  
at m c c 

where (. . .)" (. . .)k-.o. Since the first term on the right-hand side of (3.3) is quadratic 
in u ( k ) ,  it is sufficient to determine u ( k )  in the linear approximation with respect to 8. 
Omitting Eo(k)  in the oscillating motion u ( k ) ,  we have from (3.1) 

aui(k)  - e ( E i ( k ) + ~ ~ j ( k ) B o r ) .  
at m c 

Inserting (2.1) into the first of relations (3.2), we obtain 

(k) = E: (k) eiw' + E ;  (k) e-'"', 

(3.4) 

(3.5) 

where 

(3.6) E* =- 5 d3x i i ( t ,  x)  ex~[-i(kj  * koj)xi *icy,]  
' 2(27T)3 

are functions of k and slowly varying functions of t. Then, ui(k) can be split into 

vi&)= U: + U ;  

so that (3.4) gives 

To find U ; ,  we put 

U ;  =(U; + w;)e-'"', 

where U; fulfills the following algebraic equation: 

eiji - 

m 

Consequently, we can write 

U; =MilE;, Mi/ = mideno, 

(3.7) 

(3.9) 

(3.10) 

where mil is the well known conductivity tensor for the sort of particles in question, 
and no is their averaged concentration. Explicitly, 

(3.11) 
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with f l i  = eBoi/(mc), f12 = fljfli. The substitution of (3.9) into (3.8) yields 

R Klima and V A Petriilka 

(3.12) - m  aE; 
wi =--MinMnip.  

e at  

The value of U: is found quite similarly and (3.7) then is 

u i ( k )  = eiwr( M f E t  --MzM21g) m + e-'"'(MiiE; --MinMni5), m 

We note that M f  = -Mi and E ; ( k ) =  ET*(-k). 

(3.13) 
e at  e a t  

To express the last term inside the large parentheses in (3.3) in terms of E', the 
~~ 

Maxwell equation 

aHl(k)/at = -icel,,k,E,(k) 

is used. By the same procedure as used between (3.4) and (3.13), we obtain 

iwr C 

w at 

c 
w 

Hi(k )=  -e'"'-eer,,k, 

The expressions (3.13) and (3.15) are substituted into (3.3): 

E&+-v jBo i  + d k ki iMzMilE:Ef* eiii c o 1 J [ -=-( auP e 
at  m 

aE: + i"( M,rM:M:iE:* -+ M f ~ , M s r E  - e at  at  

m aE:* 
e at  

+-M,sM,r-ek~,kiEf, +cc],  

(3.14) 

(3.15) 

(3.16) 

where cc stands for complex conjugate. This equation is transformed and simplified 
in 0 4. 

4. Averaging of velocity along the oscillating trajectory 

Similarly to Klima (1967, 1968), it is convenient to introduce velocity V :  

a U i  vi = vi +ti-, 
ax, (4.1) 

where ti is defined by 

ay,/at = vi. (4.2) 

In other words, 6 is the oscillating displacement of the fluid volume element. From 
(4.1) 

d3k [i(k)kivT ( k ) ,  (4.3) 
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where t i ( k )  is calculated from Fourier transformed equation (4.2) in the same approxi- 
mation as used below (3.4): 

&(k) = ei"f --M;E: i +-MfMf-+,Mfg) im aE: 1 
w ew at w at 

im aE; 1 
e u  at w at 

+ e-iwr( ;&E; - -MjsMsr -+7Mjr -  (4.4) 

Inserting (4.3) with (4.4) into (3.16) gives 

n k  aE:* 
w at 

- eimk+ k,M,,-M*,iE 

ie aEf k ,  aE:* 

ie aEt k ,  aE:* 

-- 2 kiMjrE :* - + lMjSMsr-  E ;  
mw at w at 

mw at w 
(4.5) + k,MjrE :* - - -MisMsr-Et].  at 

In contrast to (3.16), only terms proportional to time derivatives of the oscillating field 
amplitude remain in the last integral. It follows immediately from (3.11) that 

ie aMii M . M  =--- 
m aw (4.6) rn nf - 

and 

e 
(4.7) 

n k  iMil+ei,k-Mm~+---Sil=O. 
w mw 

Multiplying this identity by k p  and differentiating it yields 

The following relation is obtained by multiplying (4.7) by k,uMjr, differentiating it and 
using (4.8): 

The identities (4.6)-(4.9) simplify equation (4.5) considerably: 
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5. Final equation and particle fluxes 

Consider a flat wave packet which is very long in all three coordinates (cube Li) .  Then it 
is easy to find from (3.6) that 

R Klima and V A Petriilka 

d3k k,EfE:* = k"'(h)3&i(t)&,(t) exp[i(ai -cur)]. 
4 27T 

Instead of 8 (2.1), we now introduce the more usual complex representation 

Ei = si exp[-i(ut - ko,xl +ai)] 

so that gi = Re (Ei) and, from (5. l) ,  

Further, we define the space average symbol (. . .), i.e. 

1 3  
(V i )  = (-) I d3x V,. 

LP 
Then we have 

vo = 2 (V,). a3 
This space averaging is obviously equivalent to averaging over quickly varying phases, 
see the argument of the cosine in (2.1). Consequently, ( V )  is identical with VL used in 
(Klima 1967, 1968). Equation (4.10) then is 

-=-Eoi+ei jkVLi& dVLi e +- FTi 
at m m 

with 

Let us consider the more general case when v # 0, Bo, Eo and the oscillating field 
amplitudes depend on x, too. Then the time-averaged motion is governed by equation 
(3.10) in Klima (1968) with the right-hand side supplemented by F, (5.7). Time 
dependences of field amplitudes have been admitted in the paper just referred to. In 
fact, consequent effects have not been considered either there or in Klima (1967). We 
note that the previous results (Klima 1967, 1968) are valid for arbitrary v / u .  For 
simplicity, we present here explicitly only the case v = 0 which is needed in 0 6: 

e aw 
axi C axi nom(%+ VLi- = enoEoi+-noeijkVLjBOk -no-+noFTi, (5.8) 

where FTi is given by (5.7) and 

To derive the partial current density j i  = envi, we again first omit spatial dependence of 
Bo. We put n = no + n' and assume for the moment that no is also homogeneous, n' being 
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the oscillating part of the concentration. The k = 0 component of the Fourier transform 
of ji is 

(5.10) 5 0 j i  = enovy + e  d3k n'(k)v? ( k ) .  

From the continuity equation, 

an'(k)/dt = -inokjvj(k). (5.11) 

We easily find by comparing (5.11) with (4.2) that n'(k)= -inokiQ. In view of (4.3), 
equation (5.10) then simplifies to jy  = enoVQ. Consequently, the partial current density 
averaged at a fixed point of space is j o i  s enoVLi. If space dependences of fields are 
included, this result is to be supplemented by another term derived previously (Klima 
1967, 1968), i.e. 

where 

(5.12) 

(5.13) 

is the magnetic moment density of the partial oscillating current. 

6. Discussion and conclusion 

With proper values of e and m, equation (5.8) is valid both for electrons and ions. The 
sum of those equations can be transformed in a similar way to that done in Klima and 
Petriilka (1968). However, the transformation method is modified by including the 
time dependence of field amplitudes in Maxwell's equations. The result is (see 
appendix) 

where T,k is the tensor of time-averaged stresses (Klima and Petriilka 1968): 

is the average field momentum density. Equation (6.1) coincides with the ansatz used 
by Washimi and Karpman (1976, their equation (20)). It has been pointed out by de 
Groot and Suttorp (1967, 1968) that such relations must be derived from microscopic 
considerations. We do not intend to discuss this problem in detail and refer to Brevik 
(1970), Shearer and Eddleman (1973), Klima and Petriilka (1974, 1975a,b), Ginzburg 
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and Ugarov (1976), Skobeltsyn (1977) and Ginzburg (1977). Washimi and Karpman 
(1976) also give briefly an alternative (microscopic) derivation of the time-averaged 
force. However, their final results (21) and/or (28) both differ from our formula (5.7) 
(summed over electrons and ions) by 

(6.4) 

which does not vanish in general. Since Washimi and Karpman (1976) do not present 
the relevant algebra in detail, we were not able to trace the origin of that difference. This 
is also the reason why we give the transition from (5.8) to (6.1) in the appendix. 

On the other hand, our formula (5.7) is consistent with Washimi (1973) and 
Milantiev (1976), who considered waves propagating along Bo. It is interesting to note 
that the form of (5.7) coincides with the a&*/at-terms in Jungwirth (1972) derived for 
anisotropic but non-magnetised plasma. 

The results of the present paper generalise the hydrodynamic analysis of Klima 
(1967, 1968) by including the time dependence of the oscillating field amplitudes. 
While new terms proportionai to &'/at arise in the equation of motion, the averaged 
current density io depends on  time only implicitly (5.12). In the approximation used 
here, v / w  is a small parameter (§ 2). Consequently, if collisions are included (v # 0), v 
does not enter the quasi-potential W and (5.9) is also valid. 

Appendix 

In the following, the transition from (5.8) to (6.1) is given. Since EO yields only standard 
contributions, we put EO = 0 for simplicity. The algebra (3.1)-(3.7) in Klima and 
Petriilka (1968) can be used here immediately. Therefore, the expression to be 
transformed is 

From the equation dDk/a t  = 4~ & , i  ]k + aEk/at, we find 

where SISt does not apply to exp(-iwt). Equations (A.2), (3.14), V . H = 0 and 

io 1 SD V XH= - - D + -  - 
c c St 

are used here instead of (3.8) and (3.10) in Klima and Petriilka (1968). The last term in 
(A.l)  then is 
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According to (5 .8) ,  the force density f m  (3 .6)  in Klima and Petriilka (1968) is to be 
supplemented by nOFrm (5.7) summed over electrons and ions: 

By using (3.14), the last two terms cancel out and (6.1) is established. 

References 

Best R W B 1968 Physica 40 182 
Boot H A H, Self S A and Shersby-Harvie R B R 1958 J .  Electron. Control 4 434 
Brevik I 1970 K. Danske Vidensk. Selsk., Mat.-Fys. Meddr 37 N o s  1 1 ,  13 
Canobbio E 1969 Nucl. Fusion 9 27 
Fainberg Y B and Shapiro V D 1965 Beam-Plasma Interaction (Kiev: Ukrainian Academy of Science) p 69 

Gaponov A V and Miller M A 1958 Z h .  Eksp. Teor. Fiz. 34 242 
Ginzburg V L 1977 Usp. Fiz. Nauk 122 325 
Ginzburg V L and Ugarov V A 1976 Usp. Fiz. Nauk 118 175 
Golovanivskii K S and Kuzovnikov A A 1961 Zh.  Tekhn. Fiz. 31 890 
Gorbunov L M 1973 Usp. Fiz. Nauk 109 631 
de Groot S R and Suttorp L G 1967 Physica 37 284, 297 
- 1968 Physica 39 28, 41, 61, 77, 84 
Hora H 1969 Phys. Fluids 12 182 
Johnston T W 1960 R C A  Rev. 21 4 
Jungwirth K 1972 Proc. 5th Eur. Conf. on Controlled Fusion and Plasma Physics vol. 1 (Grenoble: 

Kadomtsev B B 1964 Problems of Plasma Theory vol. 4 (Moscow: Atomizdat) p 188 
Klima R 1967 Z h .  Eksp. Teor. Fiz. 53 882 
- 1968 Czech. J .  Phys. B 18 1280 
- 1972 J. Plasma Phys. 7 329 
Klima R and Petriilka V A 1968 Czech. J .  Phys. B 18 1292 
- 1974 Phys. Fluids 17 1640 
- 1975a J. Phys. A :  Math. Gen. 8 829 
- 1975b A n n .  Phys., N Y  92 395 
Landau L D and Lifshitz E M 1957 Electrodynamics of Continuous Media (Moscow: GIFML) 561 (in 

Milantiev V P 1976 Izv. Vysch. Uch. Zav .  Fiz. 175 70 
Motz H and Watson C J H 1967 A d v .  Electron. Electron Phys. 23 153 
Pitaevskii L P 1960 Zh. Eksp. Teor. Fiz. 39 1450 
Shearer J W and Eddleman J L 1973 Phys. Fluids 16 1753 
Skobeltsyn D V 1977 Usp. Fiz. Nauk 122 295 
Washimi H 1973 J.  Phys. Soc. Japan 34 1373 
Washimi H and Karpman V I 1976 Z h .  Eksp. Teor. Fiz. 71 1010 
Weibel E S 1958 J. Electron. Control 5 435 

(in Russian) 

Commissariat a I’energie atomique) p 13 1 

Russian) 


